决策树分类算法有哪些
问题一:决策树算法是按什么来进行分类的 决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
决策树方法最早产生于上世纪60年代,到70年代末。由J Ross Quinlan提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大改进,既适合于分类问题,又适合于回归问题。
决策树算法构造决策树来发现数据中蕴涵的分类规则.如何构造精度高、规模小的决策树是决策树算法的核心内容。决策树构造可以分两步进行。第一步,决策树的生成:由训练样本集生成决策树的过程。一般情况下,训练样本数据集是根据实际需要有历史的、有一定综合程度的,用于数据分析处理的数据集。第二步,决策树的剪枝:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除。
问题二:数据挖掘分类方法决策树可以分多类么 数据挖掘,也称之为数据库中知识发现是一个可以从海量数据中智能地和自动地抽取一些有用的、可信的、有效的和可以理解的模式的过程.分类是数据挖掘的重要内容之一.目前,分类已广泛应用于许多领域,如医疗诊断、天气预测、信用证实、顾客区分、欺诈甄别. 现己有多种分类的方法,其中决策树分类法在海量数据环境中应用最为广泛.其原因如下:
1、决策树分类的直观的表示方法较容易转化为标准的数据库查询
2、决策树分类归纳的方法行之有效,尤其适合大型数据集.
3、决策树在分类过程中,除了数据集中已包括的信息外,不再需要额外的信息.
4、决策树分类模型的精确度较高. 该文首先研究了评估分类模型的方法.在此基础上着重研究了决策树分类方法,并对决策树算法的可伸缩性问题进行了具体分析,最后给出了基于OLE DB for DM开发决策树分类预测应用程序.
问题三:基于规则的分类器(比如用RIPPER算法)和决策树的区别在哪,使用场景有什么不同? 决策树实际上是规则分类器。基于转换的错误驱动学习方法的提出者曾经在论文中论证过这个问题,他的学习方法是规则学习器,但和决策树等价。
问题四:决策树的优缺点是什么啊 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。
决策树的优缺点:
优点:
1) 可以生成可以理解的规则。
2) 计算量相对来说不是很大。
3) 可以处理连续和种类字穿。
4) 决策树可以清晰的显示哪些字段比较重要
缺点:
1) 对连续性的字段比较难预测。
2) 对有时间顺序的数据,需要很多预处理的工作。
3) 当类别太多时,错误可能就会增加的比较快。
4) 一般的算法分类的时候,只是根据一个字段来分类。
问题五:c4.5决策树算法怎么得到分类结果 决策树主要有ID3,C4.5,CART等形式。ID3选取信息增益的属性递归进行分类,C4.5改进为使用信息增益率来选取分类属性。CART是Classfication and Regression Tree的缩写。表明CART不仅可以进行分类,也可以进行回归。
问题六:决策树分类算法的适用领域,不要概括成经济、社会、医疗领域,具体到实际问题。且用什么软件实现较方便。 决策树算法主要用于数据挖掘和机器学习,数据挖掘就是从海量数据中找出规律。一个有名的例子就是啤酒和尿布的例子,这是数据挖掘的典型。决策树算法包括ID3,C4.5,CART等,各种算法都是利用海量的数据来生成决策树的,决策树能帮助人或者机器做出决策。最简单的一个例子就是你去看病,根据决策树,医生能够判断这是什么病。软件的话用VISUAL STUDIO就可以,C语言,C++,C#,java都可以。
问题七:贝叶斯网络和贝叶斯分类算法的区别 贝叶斯分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(Na?ve Bayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。
由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。为此,就衍生出许多降低独立性假设的贝叶斯分类算法,如TAN(tree augmented Bayes network)算法。
什么是决策树算法?决策树算法常用的有哪些?各有何特点?
您好,亲 关于您说什么是决策树算法??据我查询决策树算法是一种有监督的机器学习方法,它用来解决分类和回归问题。决策树算法的基本思想是通过一系列的判断规则,将数据集划分成不同的子集,直到达到某种停止条件。特征选择是指从数据集中选择最优的特征来进行划分,通常使用信息增益、信息增益比或基尼指数等准则来衡量特征的优劣。决策树算法常用的有哪些?据我查询决策树算法有多种不同的实现方法,比较常见的有ID3、C4.5和CART三种。1、ID3算法是最早提出的决策树算法,它使用信息增益作为特征选择的准则,只能处理离散型特征,并且不支持剪枝操作。2、C4.5算法是ID3算法的改进版,它使用信息增益比作为特征选择的准则,可以处理连续型特征,并且支持后剪枝操作。3、CART算法是一种通用的决策树算法,它可以处理分类和回归问题,它使用基尼指数作为特征选择的准则,并且支持预剪枝和后剪枝操作。各种决策树算法的特点如下表所示:| 算法 | 特征选择 | 特征类型 | 剪枝方式 | | ID3 | 信息增益 | 离散型 | 不支持 | | C4.5 | 信息增益比 | 离散型和连续型 | 后剪枝 | | CART | 基尼指数 | 离散型和连续型 | 预剪枝和后剪枝 |【摘要】
什么是决策树算法?决策树算法常用的有哪些?各有何特点?【提问】
您好,亲 关于您说什么是决策树算法??据我查询决策树算法是一种有监督的机器学习方法,它用来解决分类和回归问题。决策树算法的基本思想是通过一系列的判断规则,将数据集划分成不同的子集,直到达到某种停止条件。特征选择是指从数据集中选择最优的特征来进行划分,通常使用信息增益、信息增益比或基尼指数等准则来衡量特征的优劣。决策树算法常用的有哪些?据我查询决策树算法有多种不同的实现方法,比较常见的有ID3、C4.5和CART三种。1、ID3算法是最早提出的决策树算法,它使用信息增益作为特征选择的准则,只能处理离散型特征,并且不支持剪枝操作。2、C4.5算法是ID3算法的改进版,它使用信息增益比作为特征选择的准则,可以处理连续型特征,并且支持后剪枝操作。3、CART算法是一种通用的决策树算法,它可以处理分类和回归问题,它使用基尼指数作为特征选择的准则,并且支持预剪枝和后剪枝操作。各种决策树算法的特点如下表所示:| 算法 | 特征选择 | 特征类型 | 剪枝方式 | | ID3 | 信息增益 | 离散型 | 不支持 | | C4.5 | 信息增益比 | 离散型和连续型 | 后剪枝 | | CART | 基尼指数 | 离散型和连续型 | 预剪枝和后剪枝 |【回答】
请比较k近邻,决策树和朴素贝叶斯这三种分类算法之间的异同点
决策树算法主要包括id3,c45,cart等算法,生成树形决策树,而朴素贝叶斯是利用贝叶斯定律,根据先验概率求算后验概率。 如果训练集很小,那么高偏差/低方差分类器(如朴素贝叶斯分类器)要优于低偏差/高方差分类器(如k近邻分类器),因为后者容易过拟合。然而,随着训练集的增大,低偏差/高方差分类器将开始胜出(它们具有较低的渐近误差),因为高偏差分类器不足以提供准确的模型。 一些特定算法的优点:朴素贝叶斯的优点: 超级简单,你只是在做一串计算。如果朴素贝叶斯(NB)条件独立性假设成立,相比于逻辑回归这类的判别模型,朴素贝叶斯分类器将收敛得更快,所以只需要较小的训练集。而且,即使NB假设不成立,朴素贝叶斯分类器在实践方面仍然表现很好。 如果想得到简单快捷的执行效果,这将是个好的选择。它的主要缺点是,不能学习特征之间的相互作用(比如,它不能学习出:虽然你喜欢布拉德·皮特和汤姆·克鲁斯的电影,但却不喜欢他们一起合作的电影)。逻辑回归的优点: 有许多正则化模型的方法,不需要像在朴素贝叶斯分类器中那样担心特征间的相互关联性。与决策树和支撑向量机不同,还可以有一个很好的概率解释,并能容易地更新模型来吸收新数据(使用一个在线梯度下降方法)。 如果想要一个概率框架(比如,简单地调整分类阈值,说出什么时候是不太确定的,或者获得置信区间),或你期望未来接收更多想要快速并入模型中的训练数据,就选择逻辑回归。决策树的优点: 易于说明和解释(对某些人来说—我不确定自己是否属于这个阵营)。它们可以很容易地处理特征间的相互作用,并且是非参数化的,所以你不用担心异常值或者数据是否线性可分(比如,决策树可以很容易地某特征x的低端是类A,中间是类B,然后高端又是类A的情况)。 一个缺点是,不支持在线学习,所以当有新样本时,你将不得不重建决策树。另一个缺点是,容易过拟合,但这也正是诸如随机森林(或提高树)之类的集成方法的切入点。另外,随机森林往往是很多分类问题的赢家(我相信通常略优于支持向量机),它们快速并且可扩展,同时你不须担心要像支持向量机那样调一堆参数,所以它们最近似乎相当受欢迎。 扩展资料: 朴素贝叶斯算法: 设每个数据样本用一个n维特征向量来描述n个属性的值,即:X={x1,x2,…,xn},假定有m个类,分别用C1, C2,…,Cm表示。给定一个未知的数据样本X(即没有类标号),若朴素贝叶斯分类法将未知的样本X分配给类Ci,则一定是 P(Ci|X)>P(Cj|X) 1≤j≤m,j≠i 根据贝叶斯定理: 由于P(X)对于所有类为常数,最大化后验概率P(Ci|X)可转化为最大化先验概率P(X|Ci)P(Ci)。如果训练数据集有许多属性和元组,计算P(X|Ci)的开销可能非常大,为此,通常假设各属性的取值互相独立,这样 先验概率P(x1|Ci),P(x2|Ci),…,P(xn|Ci)可以从训练数据集求得。 根据此方法,对一个未知类别的样本X,可以先分别计算出X属于每一个类别Ci的概率P(X|Ci)P(Ci),然后选择其中概率最大的类别作为其类别。 朴素贝叶斯算法成立的前提是各属性之间互相独立。当数据集满足这种独立性假设时,分类的准确度较高,否则可能较低。另外,该算法没有分类规则输出。 TAN算法(树增强型朴素贝叶斯算法) TAN算法通过发现属性对之间的依赖关系来降低NB中任意属性之间独立的假设。它是在NB网络结构的基础上增加属性对之间的关联(边)来实现的。 实现方法是:用结点表示属性,用有向边表示属性之间的依赖关系,把类别属性作为根结点,其余所有属性都作为它的子节点。通常,用虚线代表NB所需的边,用实线代表新增的边。属性Ai与Aj之间的边意味着属性Ai对类别变量C的影响还取决于属性Aj的取值。 这些增加的边需满足下列条件:类别变量没有双亲结点,每个属性有一个类别变量双亲结点和最多另外一个属性作为其双亲结点。
决策树分类方法的特点?
决策树(Decision Tree)常用于研究类别归属和预测关系的模型,比如是否抽烟、是否喝酒、年龄、体重等4项个人特征可能会影响到‘是否患癌症’,上述4项个人特征称作‘特征’,也即自变量(影响因素X),‘是否患癌症’称为‘标签’,也即因变量(被影响项Y)。决策树模型时,其可首先对年龄进行划分,比如以70岁为界,年龄大于70岁时,可能更容易归类为‘患癌症’,接着对体重进行划分,比如大于50公斤为界,大于50公斤时更可能划分为‘患癌症’,依次循环下去,特征之间的逻辑组合后(比如年龄大于70岁,体重大于50公斤),会对应到是否患癌症这一标签上。 决策树是一种预测模型,为让其有着良好的预测能力,因此通常需要将数据分为两组,分别是训练数据和测试数据。训练数据用于建立模型使用,即建立特征组合与标签之间的对应关系,得到这样的对应关系后(模型后),然后使用测试数据用来验证当前模型的优劣。通常情况下,训练数据和测试数据的比例通常为9:1,8:2,7:3,6:4或者5:5(比如9:1时指所有数据中90%作为训练模型使用,余下10%作为测试模型好坏使用)。具体比例情况似研究数据量而定无固定标准,如果研究数据较少,比如仅几百条数据,可考虑将70%或者60%,甚至50%的数据用于训练,余下数据用于测试。上述中包括模型构建和模型预测两项,如果训练数据得到的模型优秀,此时可考虑将其进行保存并且部署出去使用(此为计算机工程中应用,SPSSAU暂不提供);除此之外,当决策树模型构建完成后可进行预测,比如新来一个病人,他是否会患癌症及患癌症的可能性有多高。 决策树模型可用于特征质量判断,比如上述是否抽烟、是否喝酒、年龄、体重等4项,该四项对于‘是否患癌症’的预测作用重要性大小可以进行排名用于筛选出最有用的特征项。 决策树模型的构建时,需要对参数进行设置,其目的在于构建良好的模型(良好模型的标准通常为:训练数据得到的模型评估结果良好,并且测试数据时评估结果良好)。需要特别注意一点是:训练数据模型评估结果可能很好(甚至准确率等各项指标为100%),但是在测试数据上评估结果确很糟糕,此种情况称为‘过拟合’。因而在实际研究数据中,需要特别注意此种情况。模型的构建时通常情况下参数设置越复杂,其会带来训练数据的模型评估结果越好,但测试效果却很糟糕,因而在决策树构建时,需要特别注意参数的相关设置,接下来会使用案例数据进行相关说明。 决策树模型的原理上,其第1步是找出最优的特征和其分割点,比如影响是否患癌症的特征最可能是年龄,并且分割点可能是70岁,小于70岁可能归为‘不患癌症’,70岁及以上可能归为‘患癌症’。此第1步时会涉及到2个专业名词,分别是‘节点分裂标准’和‘节点划分方式’。第2步是找出次优的特征和其分割点,继续进行拆分。一直循环下去。 关于决策树模型时,通常涉及到以下参数值,如下: 节点分裂标准:其指模型找到特征优先顺序的计算方式,共有两种,分别是gini系数和entropy系数,二者仅为计算标准的区别功能完全一致,一般情况下使用gini系数。 SPSSAU的操作如下:
决策树的使用之分类树
5.2 决策树的基本流程可以简单概括为: 5.3 DecisionTreeClassifier参数之random_state & splitter random_state用来设置分枝中随机模式的参数,默认为none,在高维度时随机性会表现更明显。输入任意整数,会一直长出同一棵树,让模型稳定下来。 splitter有两种输入值,输入”best",决策树在分枝时虽然随机,但是还是会优先选择更重要的特征进行分枝(重要性可以通过属性feature_importances_查看),输入“random",决策树在分枝时会更加随机,树会因为含有更多的不必要信息而更深更大,并因这些不必要信息而降低对训练集的拟合。这也是防止过拟合的一种方式。当你预测到你的模型会过拟合,用这两个参数来帮助你降低树建成之后过拟合的可能性。当然,树一旦建成,我们依然是使用剪枝参数来防止过拟合。 5.4 剪枝参数 我们收集的样本数据不可能和整体的状况完全一致,因此当一棵决策树对训练数据有了过于优秀的解释性,它找出的规则必然包含了训练样本中的噪声,并使它对 未知数据 的拟合程度不足。(过拟合指的是在训练集上表现很好,在测试集上却表现糟糕) 为了让决策树有更好的泛化性,我们要对决策树进行剪枝。剪枝策略对决策树的影响巨大,正确的剪枝策略是优化决策树算法的核心。sklearn为我们提供了不同的剪枝策略: 5.4.1 max_depth 限制树的最大深度,超过设定深度的树枝全部剪掉。这是用得最广泛的剪枝参数,在高维度低样本量时非常有效。 5.4.2 min_samples_leaf min_samples_leaf 限定,一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练本,否则分枝就不会发生,或者分枝会朝着满足每个子节点都包含min_samples_leaf个样本的方向去发生。一般搭配max_depth使用,在回归树中有神奇的效果,可以让模型变得更加平滑。这个参数的数量设置得太小会引起过拟合,设置得太大就会阻止模型学习数据。一般来说,建议从=5开始使用。如果叶节点中含有的样本量变化很大,建议输入浮点数作为样本量的百分比来使用。对于类别不多的分类问题,=1通常就是最佳选择。 5.4.3 min_samples_split min_samples_split限定,一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则分枝就不会发生。 5.4.4 max_features max_features限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃。和max_depth异曲同工,max_features是用来限制高维度数据的过拟合的剪枝参数,但其方法比较暴力,是直接限制可以使用的特征数量而强行使决策树停下的参数,在不知道决策树中的各个特征的重要性的情况下,强行设定这个参数可能会导致模型学习不足。如果希望通过降维的方式防止过拟合,建议使用PCA,ICA或者特征选择模块中的降维算法。 5.4.5 min_impurity_decrease min_impurity_decrease限制信息增益的大小,信息增益小于设定数值的分枝不会发生。这是在0.19版本种更新的功能,在0.19版本之前时使用min_impurity_split。 5.4.6 确认最优的剪枝参数 我们要使用确定超参数的曲线来进行判断了,继续使用我们已经训练好的决策树模型clf。超参数的学习曲线,是一条以超参数的取值为横坐标,模型的度量指标为纵坐标的曲线,它是用来衡量不同超参数取值下模型的表现的线。在我们建好的决策树里,我们的模型度量指标就是score。 5.5 目标权重参数 5.5.1 class_weight 完成样本标签平衡的参数。样本不平衡是指在一组数据集中,标签的一类天生占有很大的比例。因此我们要使用class_weight参数对样本标签进行一定的均衡,给少量的标签更多的权重,让模型更偏向少数类,向捕获少数类的方向建模。该参数默认None,此模式表示自动给与数据集中的所有标签相同的权重。 5.5.2 min_weight_fraction_leaf 有了权重之后,样本量就不再是单纯地记录数目,而是受输入的权重影响了,因此这时候剪枝,就需要搭配min_ weight_fraction_leaf这个基于权重的剪枝参数来使用。如果样本是加权的,则使用基于权重的预修剪标准来更容易优化树结构,这确保叶节点至少包含样本权重的总和的一小部分。 5.6 红酒数据实例 1)加载红酒数据集 2)查看标签数据 3)查看标签名称 4)划分训练集和测试集,random_state可以使拆分出的训练集、测试集是相同的 5)建立决策树,训练模型 6)导出决策树结构 7)查看每个特征的重要性
推荐阅读
- ○ 蜻蜓校信
- ○ 无锡男性医院
- ○ 子曰 吾十有五而志于学
- ○ 教师节祝福语简单大方
- ○ 三国志12隐藏剧本
- ○ 火影495
- ○ 常薇
- ○ 魔戒3王者归来百度影音
- ○ 河南大学在哪
- ○ 创速
最新文章
- ○ 蜻蜓校信
- ○ 无锡男性医院
- ○ 子曰 吾十有五而志于学
- ○ 教师节祝福语简单大方
- ○ 三国志12隐藏剧本
- ○ 火影495
- ○ 常薇
- ○ 魔戒3王者归来百度影音
- ○ 河南大学在哪
- ○ 创速